Analysis of the bioactivity of magnetically immunoisolated peroxisomes.
نویسندگان
چکیده
Peroxisomes produce reactive oxygen species which may participate in biotransformations of innate biomolecules and xenobiotics. Isolating functional peroxisomes with low levels of contaminants would be a useful tool to investigate biotransformations occurring in these organelles that are usually confounded with biotransformations occurring in other co-isolated organelles. Here, we immunoisolate peroxisomes and demonstrate that the impurity level after isolation is low and that peroxisomes retain their biological activity. In this method, an antibody targeting a 70-kDa peroxisomal membrane protein was immobilized to silanized magnetic iron oxide beads (1-4 μm in diameter) coated with Protein A. Peroxisomes from L6 rat myoblast homogenates were magnetically captured, washed, and then analyzed for subcellular composition using enzymatic assays. Based on the ratio of peroxisomal to lysosomal activity, the retained fraction is 70-fold enriched relative to the unretained fraction. Similarly, the ratio of peroxisomal activity to mitochondrial content suggests that the retained fraction is >30-fold enriched relative to the unretained fraction. H(2)O(2) production from the β-oxidation of palmitoyl-CoA demonstrated that the isolated peroxisomal fraction was biologically active. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) analysis confirmed that the immunopurified fractions were capable of transforming the anticancer drug doxorubicin and the fatty acid analog, BODIPY 500/510 C1C12. Besides its use to investigate peroxisome biotransformations in health and disease, the combination of magnetic immunoisolation with CE-LIF could be widely applicable to investigate subcellular-specific biotransformations of xenobiotics occurring at immunoisolated subcellular compartments.
منابع مشابه
Caffeine-loaded Fe3O4 nanoparticles: A new magnetically recoverable organocatalyst for Knoevenagel condensation reaction
Caffeine loaded magnetic nanoparticle was successfully synthesized and were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The resulting nanocom...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملFe3O4@ZrO2-SO3H Nano-particles for esterification of carboxylic acids
In this work preparation of sulfonic acid functionalized magnetite encapsulated zirconia (Fe3O4@ZrO2-SO3H) has been reported. Structural, chemical, and magnetic properties of the magnetically supported catalyst have also been investigated by Fourier transform infrared (FT-IR) spectroscopy, wide angle X-ray diffraction spectroscopy (WXRD), thermal gravimetric analysis (TGA), energy dispersive X-...
متن کاملFe3O4/FDU-12: A highly efficient and magnetically separable nano-catalyst for oxidation of alcohols
A series of Fe3O4 supported on mesoporous FDU-12 silica systems were prepared by the hydrothermal conditions. The surface properties of the functionalized catalyst were analyzed by a series of characterization techniques like FTIR, XRD, N2 adsorption–desorption and TEM. XRD and adsorption–desorption analysis shows that the mesostructure of FDU silica remains intact after Fe3O4 modifications, wh...
متن کاملImmobilized Palladium-pyridine Complex on γ-Fe2O3 Magnetic Nanoparticles as a New Magnetically Recyclable Heterogeneous Catalyst for Heck, Suzuki and Copper-free Sonogashira Reactions
A new immobilized palladium-pyridine complex on γ-Fe2O3 magnetic nanoparticles was synthesized and characterized by SEM, TEM, TGA, ICP, XPS, XRD, FT-IR and CHN analysis. The catalytic activity of synthesized catalyst has been investigated in Heck, Suzuki and Sonogashira coupling reactions using a series of aryl halides. The catalyst was easily isolated from the reaction mixture by an external m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical and bioanalytical chemistry
دوره 402 1 شماره
صفحات -
تاریخ انتشار 2012